Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
2.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37804830

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Assuntos
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1146454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152954

RESUMO

Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Serpinas , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Aumento de Peso , Metabolismo Energético/genética , Serpinas/genética , Adipocinas/metabolismo
4.
Sci Rep ; 13(1): 7266, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142619

RESUMO

Obesity and type 2 diabetes are two closely related diseases representing a serious threat worldwide. An increase in metabolic rate through enhancement of non-shivering thermogenesis in adipose tissue may represent a potential therapeutic strategy. Nevertheless, a better understanding of thermogenesis transcriptional regulation is needed to allow the development of new effective treatments. Here, we aimed to characterize the specific transcriptomic response of white and brown adipose tissues after thermogenic induction. Using cold exposure to induce thermogenesis in mice, we identified mRNAs and miRNAs that were differentially expressed in several adipose depots. In addition, integration of transcriptomic data in regulatory networks of miRNAs and transcription factors allowed the identification of key nodes likely controlling metabolism and immune response. Moreover, we identified the putative role of the transcription factor PU.1 in the regulation of PPARγ-mediated thermogenic response of subcutaneous white adipose tissue. Therefore, the present study provides new insights into the molecular mechanisms that regulate non-shivering thermogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Camundongos , Animais , Transcriptoma , Diabetes Mellitus Tipo 2/metabolismo , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
6.
BMC Biol ; 21(1): 22, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737727

RESUMO

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Assuntos
Anoftalmia , Coloboma , Anormalidades do Olho , Microftalmia , Humanos , Camundongos , Animais , Anormalidades do Olho/genética , Anoftalmia/genética , Microftalmia/genética , Coloboma/genética , Camundongos Knockout , Desenvolvimento Embrionário/genética , Fenótipo , Olho , Mamíferos
7.
Sci Rep ; 12(1): 20791, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456625

RESUMO

We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.


Assuntos
Ciliopatias , Camundongos , Animais , Camundongos Knockout , Ciliopatias/genética , Técnicas de Inativação de Genes , Cílios/genética , Bases de Dados Factuais , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular
8.
Nat Commun ; 13(1): 6700, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335114

RESUMO

Lymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo. Cryo-electron microscopy reveals that scLCDV1-VILP engages IGF1R in a unique manner, inducing changes in IGF1R conformation that led to separation, rather than juxtaposition, of the transmembrane segments and hence inactivation of the receptor. Thus, scLCDV1-VILP is a natural peptide with specific antagonist properties on IGF1R signaling and may provide a new tool to guide development of hormonal analogues to treat cancers or metabolic disorders sensitive to IGF-1 without affecting glucose metabolism.


Assuntos
Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1 , Humanos , Camundongos , Animais , Receptor IGF Tipo 1/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Microscopia Crioeletrônica , Peptídeos/farmacologia
10.
Mol Ther Methods Clin Dev ; 25: 190-204, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35434177

RESUMO

Type 2 diabetes, insulin resistance, and obesity are strongly associated and are a major health problem worldwide. Obesity largely results from a sustained imbalance between energy intake and expenditure. Therapeutic approaches targeting metabolic rate may counteract body weight gain and insulin resistance. Bone morphogenic protein 7 (BMP7) has proven to enhance energy expenditure by inducing non-shivering thermogenesis in short-term studies in mice treated with the recombinant protein or adenoviral vectors encoding BMP7. To achieve long-term BMP7 effects, the use of adeno-associated viral (AAV) vectors would provide sustained production of the protein after a single administration. Here, we demonstrated that treatment of high-fat-diet-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors enabled a long-lasting increase in circulating levels of this factor. This rise in BMP7 concentration induced browning of white adipose tissue (WAT) and activation of brown adipose tissue, which enhanced energy expenditure, and reversed WAT hypertrophy, hepatic steatosis, and WAT and liver inflammation, ultimately resulting in normalization of body weight and insulin resistance. This study highlights the potential of AAV-BMP7-mediated gene therapy for the treatment of insulin resistance, type 2 diabetes, and obesity.

11.
Cell Death Dis ; 13(4): 383, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444190

RESUMO

Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.


Assuntos
Proinsulina , Retinite Pigmentosa , Animais , Modelos Animais de Doenças , Insulina , Camundongos , Camundongos Endogâmicos C57BL , Proinsulina/farmacologia , Receptor de Insulina , Retinite Pigmentosa/patologia , Sinapses/metabolismo
12.
Mol Ther Methods Clin Dev ; 23: 370-389, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761052

RESUMO

Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.

13.
Nat Commun ; 12(1): 5343, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504088

RESUMO

Mucopolysaccharidosis type IVA (MPSIVA) or Morquio A disease, a lysosomal storage disorder, is caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, resulting in keratan sulfate (KS) and chondroitin-6-sulfate accumulation. Patients develop severe skeletal dysplasia, early cartilage deterioration and life-threatening heart and tracheal complications. There is no cure and enzyme replacement therapy cannot correct skeletal abnormalities. Here, using CRISPR/Cas9 technology, we generate the first MPSIVA rat model recapitulating all skeletal and non-skeletal alterations experienced by patients. Treatment of MPSIVA rats with adeno-associated viral vector serotype 9 encoding Galns (AAV9-Galns) results in widespread transduction of bones, cartilage and peripheral tissues. This led to long-term (1 year) increase of GALNS activity and whole-body correction of KS levels, thus preventing body size reduction and severe alterations of bones, teeth, joints, trachea and heart. This study demonstrates the potential of AAV9-Galns gene therapy to correct the disabling MPSIVA pathology, providing strong rationale for future clinical translation to MPSIVA patients.


Assuntos
Condroitina Sulfatases/genética , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Mucopolissacaridose IV/terapia , Sistema Musculoesquelético/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/ultraestrutura , Condroitina Sulfatases/deficiência , Condroitina Sulfatases/metabolismo , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos/genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/genética , Sistema Musculoesquelético/patologia , Sistema Musculoesquelético/ultraestrutura , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
14.
PLoS One ; 16(2): e0247300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606810

RESUMO

OBJECTIVE: Gremlin 1 (GREM1) is a secreted BMP2/4 inhibitor which regulates commitment and differentiation of human adipose precursor cells and prevents the browning effect of BMP4. GREM1 is an insulin antagonist and serum levels are high in type 2 diabetes (T2D). We here examined in vivo effects of AAV8 (Adeno-Associated Viral vectors of serotype eight) GREM 1 targeting the liver in mature mice to increase its systemic secretion and also, in a separate study, injected recombinant GREM 1 intraperitoneally. The objective was to characterize systemic effects of GREM 1 on insulin sensitivity, glucose tolerance, body weight, adipose cell browning and other local tissue effects. METHODS: Adult mice were injected with AAV8 vectors expressing GREM1 in the liver or receiving regular intra-peritoneal injections of recombinant GREM1 protein. The mice were fed with a low fat or high fat diet (HFD) and followed over time. RESULTS: Liver-targeted AAV8-GREM1 did not alter body weight, whole-body glucose and insulin tolerance, or adipose tissue gene expression. Although GREM1 protein accumulated in liver cells, GREM1 serum levels were not increased suggesting that it may not have been normally processed for secretion. Hepatic lipid accumulation, inflammation and fibrosis were also not changed. Repeated intraperitoneal rec-GREM1 injections for 5 weeks were also without effects on body weight and insulin sensitivity. UCP1 was slightly but significantly reduced in both white and brown adipose tissue but this was not of sufficient magnitude to alter body weight. We validated that recombinant GREM1 inhibited BMP4-induced pSMAD1/5/9 in murine cells in vitro, but saw no direct inhibitory effect on insulin signalling and pAkt (ser 473 and thr 308) activation. CONCLUSION: GREM1 accumulates intracellularly when overexpressed in the liver cells of mature mice and is apparently not normally processed/secreted. However, also repeated intraperitoneal injections were without effects on body weight and insulin sensitivity and adipose tissue UCP1 levels were only marginally reduced. These results suggest that mature mice do not readily respond to GREMLIN 1 but treatment of murine cells with GREMLIN 1 protein in vitro validated its inhibitory effect on BMP4 signalling while insulin signalling was not altered.


Assuntos
Dependovirus/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Células 3T3-L1 , Animais , Peso Corporal , Linhagem Celular , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Masculino , Camundongos , Proteínas Recombinantes/administração & dosagem
15.
Int J Obes (Lond) ; 45(2): 449-460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33110143

RESUMO

BACKGROUND/OBJECTIVES: During obesity, hypertrophic enlargement of white adipose tissue (WAT) promotes ectopic lipid deposition and development of insulin resistance. In contrast, WAT hyperplasia is associated with preservation of insulin sensitivity. The complex network of factors that regulates white adipogenesis is not fully understood. Bone morphogenic protein 7 (BMP7) can induce brown adipogenesis, but its role on white adipogenesis remains to be elucidated. Here, we assessed BMP7-mediated effects on white adipogenesis in ob/ob mice. METHODS: BMP7 was overexpressed in either WAT or liver of ob/ob mice using adeno-associated viral (AAV) vectors. Analysis of gene expression, histological and morphometric alterations, and metabolites and hormones concentrations were carried out. RESULTS: Overexpression of BMP7 in adipocytes of subcutaneous and visceral WAT increased fat mass, the proportion of small-size adipocytes and the expression of adipogenic and mature adipocyte genes, suggesting induction of adipogenesis irrespective of fat depot. These changes were associated with reduced hepatic steatosis and improved insulin sensitivity. In contrast, liver-specific overproduction of BMP7 did not promote WAT hyperplasia despite BMP7 circulating levels were similar to those achieved after genetic engineering of WAT. CONCLUSIONS: This study unravels a new autocrine/paracrine role of BMP7 on white adipogenesis and highlights that BMP7 may modulate WAT plasticity and increase insulin sensitivity.


Assuntos
Adipogenia/genética , Proteína Morfogenética Óssea 7 , Resistência à Insulina/genética , Tecido Adiposo Branco/metabolismo , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo
16.
Br J Pharmacol ; 178(10): 2131-2145, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32986861

RESUMO

BACKGROUND AND PURPOSE: Glucagon-like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to nutritional intake that exerts a wide range of effects by activating GLP-2 receptors. In addition to its intestinotrophic effects, GLP-2 also positively influences glucose metabolism under conditions of obesity, but the mechanisms behind this remain unclear. Here, we have investigated the molecular role of the GLP-2/GLP-2 receptor axis in energetic metabolism, focusing on its potential modulatory effects on adipose tissue. EXPERIMENTAL APPROACH: Physiological measurements (body weight, food intake, locomotor activity, and energy expenditure) and metabolic studies (glucose and insulin tolerance tests) were performed on lean and obese mice treated with the protease-resistant GLP-2 analogue teduglutide. KEY RESULTS: Acute but not chronic centrally administered teduglutide decreased food intake and weight-gain. By contrast, chronic activation of peripheral GLP-2 receptors increased body weight-independent glucose tolerance and had anti-inflammatory effects on visceral adipose tissue. Using a gene silencing approach, we found that adipose tissue is necessary for these beneficial effects of teduglutide. Finally, teduglutide regulates the inflammatory state and acts as an anabolic signal in human adipocytes. CONCLUSION AND IMPLICATIONS: Overall, our data identify adipose tissue as a new, clinically relevant, site of action for GLP-2 activity in obesity. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Assuntos
Tecido Adiposo , Peptídeo 2 Semelhante ao Glucagon , Peso Corporal , Ingestão de Alimentos , Humanos , Obesidade/tratamento farmacológico
17.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32777016

RESUMO

Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.


Assuntos
Envelhecimento/genética , Dano ao DNA/genética , Fibrose Pulmonar Idiopática/genética , Telomerase/genética , Animais , Bleomicina/toxicidade , Senescência Celular/genética , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Telômero/genética , Encurtamento do Telômero/genética
18.
Mol Metab ; 32: 15-26, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32029225

RESUMO

OBJECTIVE: Bone morphogenetic protein 4 (BMP4) adeno-associated viral vectors of serotype 8 (AAV8) gene therapy targeting the liver prevents the development of obesity in initially lean mice by browning the large subcutaneous white adipose tissue (WAT) and enhancing energy expenditure. Here, we examine whether this approach could also reduce established obesity. METHODS: Dietary-induced obese C57BL6/N mice received AAV8 BMP4 gene therapy at 17-18 weeks of age. They were kept on a high-fat diet and phenotypically characterized for an additional 10-12 weeks. Following termination, the mice underwent additional characterization in vitro. RESULTS: Surprisingly, we observed no effect on body weight, browning of WAT, or energy expenditure in these obese mice, but whole-body insulin sensitivity and glucose tolerance were robustly improved. Insulin signaling and insulin-stimulated glucose uptake were increased in both adipose cells and skeletal muscle. BMP4 also decreased hepatic glucose production and reduced gluconeogenic enzymes in the liver, but not in the kidney, in addition to enhancing insulin action in the liver. CONCLUSIONS: Our findings show that BMP4 prevents, but does not reverse, established obesity in adult mice, while it improves insulin sensitivity independent of weight reduction. The BMP antagonist Noggin was increased in WAT in obesity, which may account for the lack of browning.


Assuntos
Tecido Adiposo Marrom , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/uso terapêutico , Terapia Genética , Insulina/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/induzido quimicamente , Transdução de Sinais
19.
Diabetes ; 69(5): 927-939, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32086292

RESUMO

Vitamin D deficiency has been associated with increased incidence of diabetes, both in humans and in animal models. In addition, an association between vitamin D receptor (VDR) gene polymorphisms and diabetes has also been described. However, the involvement of VDR in the development of diabetes, specifically in pancreatic ß-cells, has not been elucidated yet. Here, we aimed to study the role of VDR in ß-cells in the pathophysiology of diabetes. Our results indicate that Vdr expression was modulated by glucose in healthy islets and decreased in islets from both type 1 diabetes and type 2 diabetes mouse models. In addition, transgenic mice overexpressing VDR in ß-cells were protected against streptozotocin-induced diabetes and presented a preserved ß-cell mass and a reduction in islet inflammation. Altogether, these results suggest that sustained VDR levels in ß-cells may preserve ß-cell mass and ß-cell function and protect against diabetes.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores de Calcitriol/metabolismo , Animais , Glicemia , Diabetes Mellitus , Diabetes Mellitus Experimental , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/administração & dosagem , Glucose/farmacologia , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Receptores de Calcitriol/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...